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Background
The amount of published biomedical literature available online is expanding at an 
increasing rate [1, 2]. With this growing corpus of knowledge, unique opportunities exist 
for synthesizing the available information using text-mining and leveraging these syn-
thesized data to develop novel hypotheses. Previous efforts have created text-mining 
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search engines for querying the PubMed database to retrieve ranked lists of biological 
and chemical entities associated with a search term of interest based on co-mentions 
[3–7]. Such methods make it more convenient for researchers to explore the vast lit-
erature space by returning an aggregated knowledge report from specific subdomains 
of research. For example, Finding Associated Concepts with Text Analysis (FACTA+) 
enables users to query arbitrary search terms to retrieve biomedical concepts such as 
genes, diseases, symptoms, drugs, enzymes, and compounds associated with the search 
term based on shared PMIDs [3]. For each of the returned biomedical concepts, a report 
of specific journal articles detailing the association between the query term and the 
biomedical concept is provided. Similarly, KinderMiner Web [4] ranks the associations 
among a query phrase and a list of target terms using an index derived from PubMed. 
The KinderMiner algorithm employs string matching and co-occurrence counting. Dig-
See [5] associates genes, diseases, and biological events by indexing PubMed abstracts 
and using graph-based feature sets. This platform returns a ranked list of ’evidence 
sentences’ that describe the genes involved in a disease. Biomedical Entity Search 
Tool (BEST) [6] employs a dictionary-based indexing strategy that covers 12 databases 
including PubMed. For each query, BEST returns 10 categories of associated ranked 
biomedical entities including genes, drugs, chemical compounds, targets, and diseases. 
PolySearch2 [7] supports queries of the form ’Given X, report all associated Ys’, where X 
and Y are biological entities that can include genes, proteins, drugs, and drug actions. 
The PolySearch2 platform surveys a range of platforms including PubMed, and 14 addi-
tional biomedical databases, as well as Wikipedia and US patent application abstracts, 
and returns ranked lists of relevant results.

The ability to retrieve relevant biological entities from the results of a literature query 
opens opportunities for discovery. By abstracting the relationships among biologi-
cal entities, and incorporating other data resources, it is possible to create knowledge 
graphs [8–10]. Pathway Assembly from Literature Mining - an Information Search Tool 
(PALM-IST) is a search engine that conducts text searches to retrieve relevant biological 
entities from literature but goes a step further to assemble protein and pathway inter-
action networks based on the extracted entities from the text [8]. LitPathExplorer [9] 
queries PubMed for user-specified biological entities, roles, and events, and uses semi-
supervised learning to discover new associations and events. The LitPathExplorer plat-
form provides interactive visualizations that permit the exploration of pathway models. 
LitPathExplorer content is organized based on levels of confidence in the reported rela-
tionships. Geneshot [10], a tool that we developed, enables users to query biomedical 
terms to retrieve top-ranked genes based on shared PMIDs. Additionally, Geneshot 
further prioritizes genes associated with the search term based on co-occurrence and 
co-expression with the top returned genes from the literature search. Leveraging the 
literature-associated genes to make further predictions permits the creation of meta-
networks that may uncover unknown gene-function associations. Drug discovery is a 
field that may benefit from such approaches to prioritize novel compounds for treatment 
of diseases, or for the discovery of previously unknown associations between small mol-
ecules and side effects, biological pathways, and other attributes.

Here we present DrugShot, a web-based search engine and an Appyter [11] that ena-
bles users to query any biomedical or biological term to retrieve sets of small molecules 
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associated with the search term. Upon submitting a query, DrugShot generates a variety 
of figures and tables that display the most relevant compounds to the queried search 
term. DrugShot predicts additional compounds based on literature co-mentions of small 
molecules within PubMed abstracts, and signature similarity based on LINCS L1000 
drug-induced gene expression signatures [12]. By utilizing available biomedical litera-
ture together with drug-drug association resources, DrugShot presents unique opportu-
nities for discovering new annotations for drugs and preclinical small molecules.

Implementation
Creating DrugRIF and AutoRIF

A master list of experimental and approved small molecule names and corresponding 
International Union of Pure and Applied Chemistry (IUPAC) Chemical Identifier Keys 
(InChIKeys) [13] was curated from Drugmonizome [14] and SEP-L1000 [15]. Amino 
acids, chemical reagents, metabolites, and other non-drug-like molecules were manually 
pruned from the master list of compounds as these entities are commonly overrepre-
sented in the literature. To create DrugRIF, one of the two underlying drug-PMID asso-
ciation databases used by DrugShot, a total of 1,996,791 drug-publication associations 
covering 2,346 approved drugs and 3,845 preclinical small molecules were extracted 
from PubChem. Every small molecule in the master list was queried by the InChIKey 
through the cross-referencing endpoint from the PubChem PUG-REST application 
programming interface (API) [16, 17] to retrieve PMIDs associated with each small 
molecule. To create AutoRIF, an alternate database that contains a total of 7,977,179 
drug-publication associations covering 2,627 approved drugs and 3,732 preclinical small 
molecules, each small molecule name from the master list was harmonized with a Medi-
cal Subject Heading (MeSH) preferred term identifier. These terms were queried using 
the National Center for Biotechnology Information (NCBI) E-utilities API to query Pub-
Med with the term [18]. The search returned PubMed IDs associated with each MeSH 
small molecule term. It should be noted that we filtered the results to retrieve only pub-
lications that include the searched MeSH term. Small molecule terms were required to 
be associated with at least two PMIDs to be included in DrugRIF or AutoRIF. DrugRIF 
is a manually curated resource of drug-PMID relationships where the provenance of 
each entity can be traced to a PubChem record, whereas AutoRIF is a more comprehen-
sive resource, albeit more prone to errors because it relies on fuzzier string matching to 
retrieve PubMed-ID/drug associations.

Creating the prediction matrices

Two separate DrugRIF and AutoRIF literature co-mentions prediction matrices were 
created, one from the DrugRIF file and one from the AutoRIF file. These two separate 
matrices were created by taking pairwise absolute counts of shared PMIDs between the 
6,151 (for DrugRIF) and 6,360 (for AutoRIF) drugs and small molecules. Drug-drug sim-
ilarity was also computed from pre-processed LINCS L1000 drug-induced gene expres-
sion signatures stored in the SEP-L1000 database [15]. Pairwise cosine similarity was 
used to compute similarity between all drug-induced signatures, producing a similarity 
matrix containing 19,679 drugs and preclinical small molecules.
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The DrugShot search engine

The DrugShot search engine enables users to input any search term. The term is que-
ried using the NCBI E-utilities E-search PubMed API [18] to retrieve PMIDs associated 
with the search term. The term-PMID associations are then compared with the drug-
PMID associations in DrugRIF or AutoRIF to produce a ranked list of small molecules 
that share PMIDs with the search term. The search results table includes counts of the 
total number of overlapping PMIDs between the small molecule and the search term 
in addition to the normalized fraction of publications mentioning the small molecule 
and search term divided by the number of publications that mention the small molecule 
regardless of the search term. An unweighted drug set is created from the ranked small 
molecules from the returned list by a specified cutoff. The small molecules included in 
the set are ranked by the product of the total associated publications multiplied by their 
normalized fraction. This approach considers how frequently a small molecule is co-
mentioned with the search term in the literature, as well as how specific the term is to a 
particular small molecule. The literature co-mentions and signature similarity prediction 
matrices are seeded with the unweighted drug set, and the top predicted compounds 
are ranked by their average similarity to the small molecules in the unweighted drug set 
(Fig. 1). As an additional option, users may also submit their own unweighted drug sets 
using the DrugShot augmentation option.

Results
Interacting with the DrugShot web‑based application

DrugShot is available as a web-based application with a user-friendly interface. The 
DrugShot landing page is divided into three sections (Fig. 2). The first section contains 
the input form for submitting Search terms (Fig.  2A). The top text box is for submit-
ting search terms that can be combined with a logical AND operator, while the bottom 
text box is for terms that should not be included in the search. Once the user presses 
the search button, publications are retrieved from PubMed, and if excluding terms are 
entered, these are filtered based on the exclusion criteria. The returned PMIDs are then 
cross-referenced against DrugRIF or AutoRIF. The second section contains an interactive 
scatter plot that visualizes the returned search results (Fig. 2B). The scatter plot displays 
the total matching publications for each small molecule on the x-axis, and a normal-
ized fraction of matching publications that mention the small molecule with the search 
terms divided by the total publications that mention the small molecule regardless of 

Fig. 1  A graphical schema of the DrugShot workflow
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the search terms on the y-axis. Hovering over any point in the scatter plot displays more 
detailed information about each small molecule. The bottom section of the DrugShot 
landing page displays the returned results in interactive downloadable tables (Fig. 2C). 

Fig. 2  DrugShot web application user interface. A Input form section for querying a biomedical search term 
of interest. B Scatter plot of all publications that mention both the drug and the search terms against the 
normalized values. C Tables providing a ranked list of associated drugs from DrugRIF (left), and predictions 
based on signature similarity (right)
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On the left is a table that contains a ranked list of small molecules associated with the 
search term, while on the right is another table with ranked small molecules that are 
predicted to be related to the search term based on literature co-mentions or gene 
expression signature similarity. Small molecules from both tables can be submitted to 
DrugEnrichr (https://​maaya​nlab.​cloud/​DrugE​nrichr/) for drug set enrichment analy-
sis, and the full content of both tables is available for download as tab-separated values 
(TSV) files. The DrugShot website also includes a drug set augmentation feature where 
users can submit their own unweighted set of small molecules to be augmented with 
additional compounds based on literature co-mentions or LINCS L1000 gene expression 
signature similarity.

Interacting with the DrugShot Appyter

The DrugShot Appyter is an alternative implementation of DrugShot. The Appyter first 
presents a simple input form that requires the user to enter a search term and an integer 
ranging from 20-200 (Fig. 3A). This integer corresponds to the size of the unweighted 
drug set that will be used for making predictions about additional compounds that 
might be relevant to the search term. Furthermore, there are drop-down menus to select 
the drug-PMID association file, the method to rank the small molecules included in the 
unweighted drug set, and lastly, the drug-drug similarity matrix to use for making pre-
dictions. Alternatively, users may upload their own set of small molecules for drug set 
augmentation with the literature co-mentions and gene expression signature similarity 
matrices. Once the input form of the Appyter is filled and the user presses submit, the 
Appyter with the user-specified inputs is executed in the cloud (Fig. 3B). The user is first 
presented with a downloadable table that displays the top 20 small molecules associ-
ated with the search term based on the number of shared PMIDs based on DrugRIF or 
AutoRIF, as well as a scatter plot of drug frequencies in the literature. The unweighted 
drug set is created from the top-ranked associated small molecules, and it is used for 
the subsequent predictions using either the literature co-mentions or LINCS L1000 
gene expression signature similarity matrices. Both the literature co-mentions and the 
signature similarity results are provided in different sections of the Appyter report. 
Additionally, downloadable tables of the top 20 predicted compounds from the litera-
ture co-mentions and the signature similarity are produced in the respective sections of 
the Appyter report. Lastly, the DrugShot Appyter reports selected drug set enrichment 
results generated by DrugEnrichr as bar charts that display the top enriched terms for 
the submitted drug sets. Permanent links to the full DrugEnrichr drug set enrichment 
analysis results are also made available.

Benchmarking DrugShot predictions

To benchmark the predictions made by DrugShot, we queried DrugShot with 835 drug 
indication terms and 1,298 side effect terms from SIDER [19], 154 mechanism of action 
terms from Drug Repurposing Hub [20], and 1,364 Gene Ontology Biological Processes 
terms [21]. We then examined how well the predictions made by DrugShot recover 
known associations between drugs and terms. To benchmark the predictions made by 
the literature co-mentions and the LINCS L1000 gene expression signature similar-
ity matrices, an unweighted drug set from AutoRIF or DrugRIF was created for each 

https://maayanlab.cloud/DrugEnrichr/
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queried term. We then calculated the average area under the receiver operating char-
acteristic curve (AUROC) and the average precision-recall curves (PRC) to assess the 
ability of each prediction matrix, literature co-mentions, and drug similarity based on 

Fig. 3  The DrugShot Appyter. A Input form where the user can select a biomedical term of interest, 
unweighted drug set size, the database of drug-PMID associations, and the method to rank the small 
molecules from the unweighted drug set. Additionally, the user can select which drug-drug similarity matrix 
to use to make predictions. B The executed notebook with options for download, toggling code, and running 
the notebook locally. Each of the elements in the table of contents is interactive for easy navigation of the 
Appyter notebook.
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gene expression, to rank the small molecules from the unweighted drug set (Figs. 4, 5, 6 
and 7). To verify that the signature similarity methods and matrices perform better than 
random, we computed the Mann-Whitney U-statistic for the AUROCs and PRCs gener-
ated from each library of drug-related terms compared with what is expected for a ran-
dom classifier (Tables 1 and 2). While the predictions based on literature co-mentions 
appear to perform much better than the predictions made by drug-drug similarity based 
on drug-induced gene expression signatures, the predictions based on gene expression 
signatures should be considered more novel. In addition, while in general the predictions 
based on co-expression produced AUROCs that are below 0.7 and PRCs that are indis-
tinguishable from those produced for random classifiers, many predictions produced 
much higher AUROCs and PRCs.

To further explore the predictions that produced the best AUROCs and PRCs using 
the LINCS L1000 gene expression similarity approach, we created DrugShot Appyter 
instances for the top 5 terms with the highest AUROCs from each collection of search 
terms (Table 3). The top performing terms are predominantly related to cancer, which 
is expected given that the small molecules were profiled in cancer cell lines. However, 
predictions for terms not specific to cancer are also predicted, for example, the side 
effects pancytopenia and gastrointestinal toxicity. It should be noted that there are many 
additional terms with high significance. The URLs in Table  3 provide persistent links 
to DrugShot Appyter instances each containing a detailed report about the respective 

Fig. 4  Violin plots of AUROC distributions for each collection of search terms for each prediction matrix 
compared with random shuffles of the prediction matrix. AUROCs for each term were determined based on 
the rankings of the unweighted drug set created from AutoRIF in each prediction matrix. A AutoRIF literature 
co-mentions prediction matrix. B DrugRIF literature co-mentions prediction matrix. C Signature similarity 
prediction matrix
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Fig. 5  Violin plots of average precision score distributions for each collection of search terms for each 
prediction matrix compared with random shuffles of the prediction matrix. Average precision scores for 
each term were determined based on the rankings of the unweighted drug set created from AutoRIF in 
each prediction matrix. A AutoRIF literature co-mentions prediction matrix. B DrugRIF literature co-mentions 
prediction matrix. C Signature similarity prediction matrix

Fig. 6  Violin plots of AUROC distributions for each collection of search terms for each prediction matrix 
compared with random shuffles of the prediction matrix. AUROCs for each term were determined based on 
the rankings of the unweighted drug set created from DrugRIF in each prediction matrix. A AutoRIF literature 
co-mentions prediction matrix. B DrugRIF literature co-mentions prediction matrix. C Signature similarity 
prediction matrix
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Fig. 7  Violin plots of average precision score distributions for each collection of search terms for each 
prediction matrix compared with random shuffles of the prediction matrix. Average precision scores for 
each term were determined based on the rankings of the unweighted drug set created from DrugRIF in 
each prediction matrix. A AutoRIF literature co-mentions prediction matrix. B DrugRIF literature co-mentions 
prediction matrix. C Signature similarity prediction matrix

Table 1  Mann-Whitney U statistic and p-values calculated from Mann-Whitney U test to determine 
a significant difference in average AUROCs and PRCs of signature similarity matrix rankings of the 
unweighted drug set created from AutoRIF and randomly shuffled predictions across libraries of 
drug-related terms that were queried using DrugShot

Library AUROC evaluation PRC evaluation

U-statistic p-value U-statistic p-value

SIDER side effects (1298 terms) 1,495,996 9.12E−257 922,468 2.75E−05

SIDER indications (835 terms) 626,342 8.62E−175 402,517 4.48E−08

Drug repurposing hub MoA (154 terms) 20,213 2.82E−36 14,484 1.62E−06

GO biological processes (1364 terms) 898,342 6.53E−295 776,522 7.79E−156

Table 2  Mann Whitney U statistic and p-values calculated from Mann-Whitney U test to determine 
a significant difference in average AUROCs and PRCs of signature similarity matrix rankings of the 
unweighted drug set created from DrugRIF and randomly shuffled predictions across libraries of 
drug-related terms that were queried using DrugShot

AUROC evaluation PRC Evaluation

Library U-statistic p-value U-statistic p-value

SIDER side effects (1298 terms) 1,191,630 6.79E−240 771,508 1.37E−11

SIDER indications (835 terms) 558,470 1.39E−154 388,449 2.51E−15

Drug repurposing hub MoA (154 terms) 18,728 2.75E−32 14,061 1.74E−07

GO biological processes (1364 terms) 674,733 5.06E−230 505,036 6.32E−53
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Table 3  Terms with highest performing AUROC values from the signature similarity matrix 
benchmark, each with a link to an Appyter instance 

Term AUROC Library DrugShot Appyter instance 
URLs

mTOR inhibitor 0.9042 Drug Repurposing Hub mecha-
nism of action

https://​appyt​ers.​maaya​nlab.​
cloud/​DrugS​hot/​9ba88​a051c​
155dc​0adce​a183c​52aeb​da326​
5e909/

AKT inhibitor 0.8953 Drug Repurposing Hub mecha-
nism of action

https://​appyt​ers.​maaya​nlab.​
cloud/​DrugS​hot/​d17a3​83517​
96e75​95570​14ac1​4a6ef​00984​
04d71/

Thymidylate synthase inhibitor 0.8821 Drug Repurposing Hub mecha-
nism of action

https://​appyt​ers.​maaya​nlab.​
cloud/​DrugS​hot/​4bac8​288bb​
b1178​6b6ce​db7aa​ae685​e7a79​
57236/

PI3K inhibitor 0.8806 Drug Repurposing Hub mecha-
nism of action

https://​appyt​ers.​maaya​nlab.​
cloud/​DrugS​hot/​afab7​24e54​
61e36​7bd06​1684d​4d1ec​c7b96​
e4c13/

HDAC inhibitor 0.8785 Drug Repurposing Hub mecha-
nism of action

https://​appyt​ers.​maaya​nlab.​
cloud/​DrugS​hot/​61ebf​cc11f​
e370a​57404​1d9df​ea7ab​1f2d8​
a191e/

Small cell lung cancer 0.8683 SIDER indications https://​appyt​ers.​maaya​nlab.​
cloud/​DrugS​hot/​84d1f​4fb47​
842d0​45d16​c8880​1e421​dfffe​
e08f7/

Mitotic cytokinesis 0.8631 Gene Ontology https://​appyt​ers.​maaya​nlab.​
cloud/​DrugS​hot/​5ebe7​c287b​
81769​17769​4bfac​65b3f​6e724​
83961/

Doxorubicin metabolic process 0.8622 Gene Ontology https://​appyt​ers.​maaya​nlab.​
cloud/​DrugS​hot/​98e82​63b58​
7a473​83e9d​05381​c0ebb​4a67a​
f78be/

Positive regulation of lymphoc. 
proliferation

0.8567 Gene Ontology https://​appyt​ers.​maaya​nlab.​
cloud/​DrugS​hot/​240cd​bca4a​
8e45b​83e55​ffcdb​1c1a2​617c5​
da908/

Activation of MAPKKK activity 0.8554 Gene Ontology https://​appyt​ers.​maaya​nlab.​
cloud/​DrugS​hot/​295c6​c5654​
acb00​f8dcd​493a0​b5143​215b3​
374ec/

Positive regulation of cell cycle 
arrest

0.8534 Gene Ontology https://​appyt​ers.​maaya​nlab.​
cloud/​DrugS​hot/​63483​f95a3​
44da3​5eb50​1b8b4​da5b9​602e8​
8ad83/

Malignant glioma 0.84823 SIDER indications https://​appyt​ers.​maaya​nlab.​
cloud/​DrugS​hot/​98790​408cb​
cbaa0​cc86d​969cf​f3871​e699c​
115ef/

Pancytopenia 0.8448 SIDER indications https://​appyt​ers.​maaya​nlab.​
cloud/​DrugS​hot/​117f3​1c00c​
ef90e​e68ce​be3a3​157a7​748f8​
2fad3/

Non-small cell lung cancer 0.84403 SIDER indications https://​appyt​ers.​maaya​nlab.​
cloud/​DrugS​hot/​60c28​aff5f​c5a73​
1dae5​aae5c​77d17​dec7d​9e1a4/

Cervix carcinoma 0.844006 SIDER indications https://​appyt​ers.​maaya​nlab.​
cloud/​DrugS​hot/​2a58a​9b18f​
1a0f6​7adab​59d46​129a8​b81ad​
8bf3f/

https://appyters.maayanlab.cloud/DrugShot/9ba88a051c155dc0adcea183c52aebda3265e909/
https://appyters.maayanlab.cloud/DrugShot/9ba88a051c155dc0adcea183c52aebda3265e909/
https://appyters.maayanlab.cloud/DrugShot/9ba88a051c155dc0adcea183c52aebda3265e909/
https://appyters.maayanlab.cloud/DrugShot/9ba88a051c155dc0adcea183c52aebda3265e909/
https://appyters.maayanlab.cloud/DrugShot/d17a38351796e759557014ac14a6ef0098404d71/
https://appyters.maayanlab.cloud/DrugShot/d17a38351796e759557014ac14a6ef0098404d71/
https://appyters.maayanlab.cloud/DrugShot/d17a38351796e759557014ac14a6ef0098404d71/
https://appyters.maayanlab.cloud/DrugShot/d17a38351796e759557014ac14a6ef0098404d71/
https://appyters.maayanlab.cloud/DrugShot/4bac8288bbb11786b6cedb7aaae685e7a7957236/
https://appyters.maayanlab.cloud/DrugShot/4bac8288bbb11786b6cedb7aaae685e7a7957236/
https://appyters.maayanlab.cloud/DrugShot/4bac8288bbb11786b6cedb7aaae685e7a7957236/
https://appyters.maayanlab.cloud/DrugShot/4bac8288bbb11786b6cedb7aaae685e7a7957236/
https://appyters.maayanlab.cloud/DrugShot/afab724e5461e367bd061684d4d1ecc7b96e4c13/
https://appyters.maayanlab.cloud/DrugShot/afab724e5461e367bd061684d4d1ecc7b96e4c13/
https://appyters.maayanlab.cloud/DrugShot/afab724e5461e367bd061684d4d1ecc7b96e4c13/
https://appyters.maayanlab.cloud/DrugShot/afab724e5461e367bd061684d4d1ecc7b96e4c13/
https://appyters.maayanlab.cloud/DrugShot/61ebfcc11fe370a574041d9dfea7ab1f2d8a191e/
https://appyters.maayanlab.cloud/DrugShot/61ebfcc11fe370a574041d9dfea7ab1f2d8a191e/
https://appyters.maayanlab.cloud/DrugShot/61ebfcc11fe370a574041d9dfea7ab1f2d8a191e/
https://appyters.maayanlab.cloud/DrugShot/61ebfcc11fe370a574041d9dfea7ab1f2d8a191e/
https://appyters.maayanlab.cloud/DrugShot/84d1f4fb47842d045d16c88801e421dfffee08f7/
https://appyters.maayanlab.cloud/DrugShot/84d1f4fb47842d045d16c88801e421dfffee08f7/
https://appyters.maayanlab.cloud/DrugShot/84d1f4fb47842d045d16c88801e421dfffee08f7/
https://appyters.maayanlab.cloud/DrugShot/84d1f4fb47842d045d16c88801e421dfffee08f7/
https://appyters.maayanlab.cloud/DrugShot/5ebe7c287b81769177694bfac65b3f6e72483961/
https://appyters.maayanlab.cloud/DrugShot/5ebe7c287b81769177694bfac65b3f6e72483961/
https://appyters.maayanlab.cloud/DrugShot/5ebe7c287b81769177694bfac65b3f6e72483961/
https://appyters.maayanlab.cloud/DrugShot/5ebe7c287b81769177694bfac65b3f6e72483961/
https://appyters.maayanlab.cloud/DrugShot/98e8263b587a47383e9d05381c0ebb4a67af78be/
https://appyters.maayanlab.cloud/DrugShot/98e8263b587a47383e9d05381c0ebb4a67af78be/
https://appyters.maayanlab.cloud/DrugShot/98e8263b587a47383e9d05381c0ebb4a67af78be/
https://appyters.maayanlab.cloud/DrugShot/98e8263b587a47383e9d05381c0ebb4a67af78be/
https://appyters.maayanlab.cloud/DrugShot/240cdbca4a8e45b83e55ffcdb1c1a2617c5da908/
https://appyters.maayanlab.cloud/DrugShot/240cdbca4a8e45b83e55ffcdb1c1a2617c5da908/
https://appyters.maayanlab.cloud/DrugShot/240cdbca4a8e45b83e55ffcdb1c1a2617c5da908/
https://appyters.maayanlab.cloud/DrugShot/240cdbca4a8e45b83e55ffcdb1c1a2617c5da908/
https://appyters.maayanlab.cloud/DrugShot/295c6c5654acb00f8dcd493a0b5143215b3374ec/
https://appyters.maayanlab.cloud/DrugShot/295c6c5654acb00f8dcd493a0b5143215b3374ec/
https://appyters.maayanlab.cloud/DrugShot/295c6c5654acb00f8dcd493a0b5143215b3374ec/
https://appyters.maayanlab.cloud/DrugShot/295c6c5654acb00f8dcd493a0b5143215b3374ec/
https://appyters.maayanlab.cloud/DrugShot/63483f95a344da35eb501b8b4da5b9602e88ad83/
https://appyters.maayanlab.cloud/DrugShot/63483f95a344da35eb501b8b4da5b9602e88ad83/
https://appyters.maayanlab.cloud/DrugShot/63483f95a344da35eb501b8b4da5b9602e88ad83/
https://appyters.maayanlab.cloud/DrugShot/63483f95a344da35eb501b8b4da5b9602e88ad83/
https://appyters.maayanlab.cloud/DrugShot/98790408cbcbaa0cc86d969cff3871e699c115ef/
https://appyters.maayanlab.cloud/DrugShot/98790408cbcbaa0cc86d969cff3871e699c115ef/
https://appyters.maayanlab.cloud/DrugShot/98790408cbcbaa0cc86d969cff3871e699c115ef/
https://appyters.maayanlab.cloud/DrugShot/98790408cbcbaa0cc86d969cff3871e699c115ef/
https://appyters.maayanlab.cloud/DrugShot/117f31c00cef90ee68cebe3a3157a7748f82fad3/
https://appyters.maayanlab.cloud/DrugShot/117f31c00cef90ee68cebe3a3157a7748f82fad3/
https://appyters.maayanlab.cloud/DrugShot/117f31c00cef90ee68cebe3a3157a7748f82fad3/
https://appyters.maayanlab.cloud/DrugShot/117f31c00cef90ee68cebe3a3157a7748f82fad3/
https://appyters.maayanlab.cloud/DrugShot/60c28aff5fc5a731dae5aae5c77d17dec7d9e1a4/
https://appyters.maayanlab.cloud/DrugShot/60c28aff5fc5a731dae5aae5c77d17dec7d9e1a4/
https://appyters.maayanlab.cloud/DrugShot/60c28aff5fc5a731dae5aae5c77d17dec7d9e1a4/
https://appyters.maayanlab.cloud/DrugShot/2a58a9b18f1a0f67adab59d46129a8b81ad8bf3f/
https://appyters.maayanlab.cloud/DrugShot/2a58a9b18f1a0f67adab59d46129a8b81ad8bf3f/
https://appyters.maayanlab.cloud/DrugShot/2a58a9b18f1a0f67adab59d46129a8b81ad8bf3f/
https://appyters.maayanlab.cloud/DrugShot/2a58a9b18f1a0f67adab59d46129a8b81ad8bf3f/
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query term in the table. Such predictions provide a rich foundation for hypotheses that 
could be further validated experimentally.

Atherosclerosis case study

Atherosclerosis is a common disease where cholesterol plaques accumulate in 
the inner walls of major arteries, ultimately leading to an artery blockage that can 
result in a stroke or a heart attack. There are several cholesterol-lowering drugs to 
treat the condition, including statins, niacin, PCSK9 inhibitors, fibrates, and adeno-
sine triphosphate-citrate lyase (ACL) inhibitors. In this case study, we aim to dem-
onstrate how DrugShot can be used to discover potential novel cholesterol-lowering 
drugs. We queried DrugShot with the terms “atherosclerosis”, “cholesterol”, and “sta-
tin” to find the drugs that are most associated with these terms in the literature, and 
then used the returned results to predict potential preclinical small molecules based 
on L1000 gene expression signature similarity (Additional file 1: Tables S1–S6). This 
approach assumes that preclinical small molecules that induce similar gene expres-
sion signatures in cell lines as the drugs currently used to lower cholesterol are likely 
to also have similar mechanisms of action (MOAs). In all searches, namely “ather-
osclerosis”, “cholesterol”, and “statin”, several preclinical LINCS-profiled drugs were 
ranked repeatedly in the top 20. These include: BMS-536924, SA-1478088, CAM-9-
027-3, VU-0418939-2, purvalanol-a, methyl benzethonium, and TG-101348. Evidence 
exists  that several of these preclinical compounds may have cholesterol-lowering 
activity. BMS-536924 is a competitive and selective insulin-like growth factor recep-
tor (IGF-1R) kinase and insulin receptor (IR) inhibitor. Insulin-like growth factor 
(IGF) is involved in the proliferation and hypertrophy of vascular smooth muscle cells 
[22]. Previous studies reported that reduction in IGF-1 expression may be beneficial 
during early stages of plaque formation in atherosclerosis which is characterized by 
hypertrophy of vascular smooth muscle cells [23]. The third-ranked small molecule, 
SA-1478088, is a metalloproteinase inhibitor. Metalloproteinases are present in the 
extracellular environment of cells and are responsible for degradation of extracellular 

Table 3  (continued)

Term AUROC Library DrugShot Appyter instance 
URLs

Gastrointestinal carcinoma 0.8417 SIDER side effects https://​appyt​ers.​maaya​nlab.​
cloud/​DrugS​hot/​f96cc​e4280​
65905​c66c0​ec594​44316​dcae4​
4d717/

Impaired healing 0.8377 SIDER side effects https://​appyt​ers.​maaya​nlab.​
cloud/​DrugS​hot/​d6f0c​132ce​
b3cb3​1301a​64f2f​82525​54f3f​
2dd48/

Myeloid leukaemia 0.8361 SIDER side effects https://​appyt​ers.​maaya​nlab.​
cloud/​DrugS​hot/​c56dc​625ef​
ee9bf​409bf​01429​981bf​0ee50​
0ca4b/

Gastrointestinal toxicity 0.8348 SIDER side effects https://​appyt​ers.​maaya​nlab.​
cloud/​DrugS​hot/​9ec18​f5d14​
15f37​783c4​06a31​c8974​0fc26​
8f177/

https://appyters.maayanlab.cloud/DrugShot/f96cce428065905c66c0ec59444316dcae44d717/
https://appyters.maayanlab.cloud/DrugShot/f96cce428065905c66c0ec59444316dcae44d717/
https://appyters.maayanlab.cloud/DrugShot/f96cce428065905c66c0ec59444316dcae44d717/
https://appyters.maayanlab.cloud/DrugShot/f96cce428065905c66c0ec59444316dcae44d717/
https://appyters.maayanlab.cloud/DrugShot/d6f0c132ceb3cb31301a64f2f8252554f3f2dd48/
https://appyters.maayanlab.cloud/DrugShot/d6f0c132ceb3cb31301a64f2f8252554f3f2dd48/
https://appyters.maayanlab.cloud/DrugShot/d6f0c132ceb3cb31301a64f2f8252554f3f2dd48/
https://appyters.maayanlab.cloud/DrugShot/d6f0c132ceb3cb31301a64f2f8252554f3f2dd48/
https://appyters.maayanlab.cloud/DrugShot/c56dc625efee9bf409bf01429981bf0ee500ca4b/
https://appyters.maayanlab.cloud/DrugShot/c56dc625efee9bf409bf01429981bf0ee500ca4b/
https://appyters.maayanlab.cloud/DrugShot/c56dc625efee9bf409bf01429981bf0ee500ca4b/
https://appyters.maayanlab.cloud/DrugShot/c56dc625efee9bf409bf01429981bf0ee500ca4b/
https://appyters.maayanlab.cloud/DrugShot/9ec18f5d1415f37783c406a31c89740fc268f177/
https://appyters.maayanlab.cloud/DrugShot/9ec18f5d1415f37783c406a31c89740fc268f177/
https://appyters.maayanlab.cloud/DrugShot/9ec18f5d1415f37783c406a31c89740fc268f177/
https://appyters.maayanlab.cloud/DrugShot/9ec18f5d1415f37783c406a31c89740fc268f177/
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and intracellular proteins. Metalloproteinases have long been associated with ather-
osclerosis [24, 25], and metalloproteinase inhibitors such as SA-1478088 have been 
previously suggested as therapeutics for treating cardiovascular disease [26],  which 
may suggest that SA-1478088 is a viable candidate for treating atherosclerosis. Hence, 
the highly ranked predicted compounds should serve as excellent candidates for in-
vitro and in-vivo experiments of atherosclerosis disease models. This approach can be 
broadly applied to many other contexts.

Discussion and conclusions
Here we present DrugShot, a web-server application and an Appyter to enable the rank-
ing of drugs and small molecules based on any biomedical search term. DrugShot also 
makes predictions about additional small molecules that may be associated with the 
biomedical search term based on literature co-mentions or drug-drug LINCS L1000 
gene expression signature similarity. The collection of compounds covered by DrugShot 
is mainly based on the ~ 20,000 LINCS L1000 compounds because these compounds 
have expression data needed for making predictions by DrugShot. Importantly, within 
these ~ 20,000 LINCS compounds, almost all FDA-approved drugs (small molecules) 
are included. However, it is possible to expand DrugShot’s chemical space. For example, 
we can use knowledge about the drugs’ chemical similarity, known targets, results from 
bioassays, or other features,  in addition to expression and literature co-mentions.

DrugShot also introduces DrugRIF and AutoRIF, two resources of drug-PMID asso-
ciations. The drug-PMID co-occurrence identification by AutoRIF and DrugRIF is 
done with simple co-occurrence text processing (AutoRIF) or manual extraction of 
co-mentions (DrugRIF), which could benefit from more advanced text mining tech-
nologies that understand semantics and resolve synonyms, for example, BioBERT 
[27]. Furthermore, sets of small molecules and drugs can be submitted to Drug-
Shot for drug set augmentation using the drug-drug similarity matrices. In this way, 
users can prioritize other compounds that may be related to their results from drug 
screens, or from annotated drug sets with a common effect or feature, for example, 
a shared side effect. Compared with the literature co-mentions matrices, the gene 
expression signature similarity matrix does not perform as well in predicting known 
compound-term associations. However, this does not mean that the predictions made 
by the LINCS L1000 gene expression signature similarity are less valid. A multitude 
of the small molecules in the gene expression signature similarity prediction matrix 
are experimental preclinical compounds, and their activity has not been fully char-
acterized. Therefore, DrugShot may offer a method to prioritize these uncharacter-
ized small molecules for experimental validation for specific applications. However, 
the predictions made by DrugShot are currently done by simple correlation calcula-
tions, and this can be improved in many ways. For example, such predictions can be 
replaced by more sophisticated machine learning methods that use other data modal-
ities, non-linear kernels, and graph-based models. For example, Drugmonizome-ML 
[14] introduces a general framework for making such predictions systematically. Fur-
thermore, by combining predictions with in-vitro drug screens, DrugShot predictions 
can be further calibrated. In the future, to maintain DrugShot, it is critical that Drug-
RIF and AutoRIF are continually updated, and the drug-drug similarity matrix based 
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on gene expression is expanded. In addition, adding a feature that allows filtering 
chemicals by approval status may more readily highlight repurposing opportunities. 
It would also be interesting to see if DrugShot can predict marketed drug repurposing 
and marketed drug withdrawals before they occur. Importantly, in Table  3 we pro-
vide the most promising predictions to follow experimentally, as well as a short list 
of compounds that may be beneficial for atherosclerosis. These are just few examples 
to demonstrate the potential of DrugShot. Overall, expanding DrugRIF and AutoRIF 
with a larger compound pool, incorporating more drug-induced gene expression pro-
files into the signature similarity prediction matrix, adding additional drug-drug simi-
larity matrices based on other attributes such as chemical similarity, and improving 
the methods used to make predictions by implementing more sophisticated methods, 
are different ways DrugShot can better illuminate associations between drugs and 
diseases, genes, and other biomedical and biological terms of interest.

Availability and requirements

Project name: DrugShot
Project home page: https://​maaya​nlab.​cloud/​drugs​hot/ and https://​appyt​ers.​maaya​

nlab.​cloud/​DrugS​hot/
Operating system(s): Platform independent
Programming language: Python
Other requirements: An up-to-date web browser
License: Apache License 2.0
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Pure and Applied Chemistry; InChIKey: IUPAC International Chemical Identifier Key; MeSH: Medical Subject Heading; 
NCBI: National Center for Biotechnology Information; ROC: Receiver operating characteristic; AUROC: Area under the 
receiver operating characteristic; ACL: Adenosine triphosphate-citrate lyase; MoA: Mechanism of action; IGF: Insulin-like 
growth factor; IR: Insulin receptor.
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